
Journal of Statistical Physics, Vol. 35, Nos. 3/4, 1984 
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The fixed point behavior of N-mode truncations of the Navier-Stokes equations 
on a two-dimensional torus is investigated as N increases. From N = 44 on the 
behavior does not undergo any qualitative change, Furthermore, the bifurca- 
tions occur at critical parameter values which clearly tend to stabilize as N 
approaches 100. 
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1. I N T R O D U C T I O N  

The advent  of modern  computers  has made  possible the numerical  investi- 
gation of nonl inear  systems of ordinary differential equations derived 
through truncations of suitable expansions of partial differential equations 
governing fluid flows. Two reasons motivate the s tudy of truncated models. 
First, an approach  is a t tempted to the solution of equations not  explicitly 
solvable. The hope is that, if the number  of modes used in the t runcat ion is 
sufficiently large, the solution will exhibit a qualitative behavior  not  too 
unlike the true one. Second, t runcated models can be very interesting as 
dynamical  systems which undergo significant changes in behavior  when an 
external parameter  assumes some critical values. The transitions which lead 
to a chaotic  regime are of part icular  interest. 
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The first work in this context, published in 1963, is a well-known paper 
by Lorenz (1) which concerns a 3-mode truncation of the equations for 
convection between parallel plates. Fifteen years later Curry (2) considered a 
15-mode extension of the Lorenz System. Yahata, in a series of papers (see, 
for example, Ref. 3), studied the Taylor vortices of the Couette flow after 
truncation of the Navier-Stokes equations with the aid of the Galerkin 
method. Orszag developed sophisticated techniques, mainly based on spec- 
tral methods, for a different numerical solution of the Navier-Stokes 
equations. These techniques were used to simulate different fluid systems 
with a very large number of degrees of freedom (see Refs. 4 and 5 and 
references therein). Together with collaborators, we investigated several 
systems derived from the Navier-Stokes equations on a two-dimensional 
torus, (6-L1) from a minimal 4-mode truncation to a largest 18-mode one. 
Such numerical work has contributed in a substantial way to the present 
knowledge of chaotic phenomena in dynamical systems. 

This paper is concerned with the attempt of studying the planar 
Navier-Stokes equations with periodic boundary conditions through trun- 
cations. Our previous studies have shown that the behavior of truncated 
models is highly sensitive to the choice of the modes used in the truncation. 
If the number of modes is small, the addition or substitution of only one 
mode can radically change the phenomenology of the model. This fact 
leads us to conclude that only considering a large number of modes can we 
hope to find a limit behavior, that is, a behavior which is not affected by 
addition or change of modes. The question is whether such a purpose can 
be achieved with a number of modes which still allows actual investigation 
by a computer. Interesting theoretical results, providing an estimate to the 
number of modes sufficient to obtain correct approximate solutions of the 
two-dimensional Navier-Stokes equations, have been recently obtained by 
Foias et al. (12) These results, however, do not appear useful to answer our 
question. 

Here we confine ourselves to investigating only the behavior of the 
fixed points. By considering the N-mode truncation associated with all the 
modes included in a ball, we obtain a system of differential equations 
which becomes larger and larger as the radius of the ball is increased. From 
n = 44 on, the phenomenology concerning the fixed points does not un- 
dergo any qualitative change. In addition, the critical values of the parame- 
ter corresponding to the bifurcations clearly tend to stabilize as N varies up 
to N = 98. It is then an interesting example of N-mode truncated Navier-  
Stokes equations which show a qualitative and quantitative limit behavior 
as the number N of modes increases. 
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. THE TRUNCATED EQUATIONS 

Consider the Navier-Stokes equations for an incompressible fluid on 

p(x , t )=  ~ p k ( t ) e  ik 'x 
k:~0 

( k ( . k : z ) ( k  2 - k  2 ) _  _ 

~k = - -  P[k[2"}'k - -  i E 2]k l l lk211kl  ~gk"}/k2 + fk, k~ +k2+k~0 
kl,k2E L 

k = (k x, k/) being a wave vector with integer components ("mode") and 
k •  (ky , -kx ) .  By imposing the reality condition 7-k = --'Tu, Eqs. (1) 
yield the following ordinary differential equations for (7k(t))k:/:0: 

( k ( -  k2) (k2 2 -  k~) _ _ 
"Yk = - -  Plk[2yk - -  i ~ 2]kl [ [k2l [k I ykl~/k2"l-A ( 5 )  

kl +k2+k=0 
Once the Yk'S are obtained, the pk'S are given by 

lOk = _ ~ (ki L �9 k2)(k , �9 k~-) 

k l + k 2 + k = O  ]kll [k2[ Ikl 2 ~k'~k2"~ J~ (6) 

If L is a finite set of 2N wave vectors such that if k E L, also - k  E L, 
we define the N-mode truncated Navier-Stokes equations as 

"Y~-k ----" - -~ /k  
(7) 

This system consists of N differential equations in the complex unknowns 
Yk(t), that is 2N equations in real variables. In the following we will often 

k ~ L  

the torus T 2 = [0, 2~r] • [0, 2rr]: 

~__uu + ( u .  V)u = - Vp + f + vAu 
0t 

divu -- 0 (1) 

T2u dx = 0 

ul ,=0 = u0 
where u is the velocity field, p is the pressure, v is the viscosity, and f a 
periodic volume force. Expand u, f, andp  in Fourier series: 

k • u(x,t) = ~ 7k(t)e/k'x (2) 
Ikl 

f(x,t) = E fk( t ) ' ~  +j~(t) ~-  e ik 'x (3) 
k~0 

(4) 
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refer to L as if constituted only by the N vectors placed in the half-space 

II + = ( ( x , y ) , x  > O,y > O, i fx  =0}  

Now, for the sake of simplicity, we suppose that the force f acts only 
on some mode k* and is independent of time. As has been shown in Ref. 
13, under these hypotheses fk* can be taken real without losing generality. 
As a consequence system (7) admits particular solutions in which each 7k(t) 
is either real or imaginary pure. The consideration of such a particular 
solution leads to the study of a system of N rather than 2N equations. 

Let L (") be the set of modes k such that Ik[ 2 = kx 2 + k f ~< M, with M 
sum of two squared integers. As M is increased from M - -  8, the trunca- 
tions associated with L (M) provide a sequence of nontrivial models, each of 
them representing an enlargement of all the previous ones. To make 
possible the comparison with the truncations already studied, (6-~1) we 
assume that k * =  ( 2 , -  1) is the only mode excited by the force f, with 
fk* = R. Letting v = 1 by a rescaling of length and time, the external 
parameter R can be referred to as the Reynolds number because of its 
physical meaning. 

Under  the above assumptions there exist infinitely many N- 
dimensional hyperplanes, subspaces of the 2N-dimensional phase space, 
which are invariant with respect to the flow defined by system (7). These 
hyperplanes are symmetrically placed because of a one-parameter group of 
angular symmetries (see again Ref. 13). Assuming 7k(t) = Pk(t)eiOk (t), with 
both Ok(t) and 0k(t ) varying in (-- m, + oe), if a and fl are real parameters, 

[o, [o, 

so: (Ok(O--'Ok(t) + (kx + (8) 

defines a one-parameter group of symmetries and 

(9) 

represents a linear continuum of stationary solutions for { 0k(t)}kEL~Mi. 
The particular solution we consider here corresponds to the hyperplane 

H~/2 (an equivalent one would be H0). For fl = qr/2, in fact, each O k in (9) 
is an integer multiple of ~r/2, which means that each "{k is either real or 
purely imaginary. To study such a solution is the same as restricting the 
choice of the initial data for (7) to the points of H~/2. In Ref. 13 support is 
given to the fact that, at least for Reynolds numbers below some critical 
threshold, the particular solution displays the whole behavior of the com- 
plex equations. 
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The adoption of a particular solution permits us to deal with a set 
(xk(t) } k ~/J M~ of real variables. There exists a transformation 

T:{xk~( - -1 )kxXk}k~L(M)  

which leaves unchanged the systems of equations we study. Besides the 
symmetry T, which is valid in any case, another symmetry �9 works when all 
the variables x k relative t o  k's with odd k x are always null. The partial 
symmetry is defined in the following way: 

,r : {Xk---~(--l~kx/2+kyx ] kfkEL(M) 

The knowledge of T and ~- is essential to the understanding of t h e  
bifurcation diagram which describes the fixed point behavior we are 
interested in. 

The largest truncation we take into account is that corresponding to 
L (64), which includes the 98 lowest modes of 1-I + . So, as M varies between 8 
and 64, we are concerned with a sequence of systems of first-order, 
nonlinear, ordinary differential equations with a maximum configuration of 
98 equations and more than 5200 nonlinear terms. The 98-mode system, 
which cannot be given here for obvious reasons, was written, together with 
its Jacobian, by the computer directly in the form of FORTRAN subroutines. 
These routines were arranged in such a way to allow the user also to select, 
among all the 98 modes, the ones associated with any value of M less 
than 64. 

3. F IXED P O I N T  B E H A V I O R  

The behavior of the fixed points in the systems S (M) is quite compli- 
cated for small M. As M increases, it tends to become simpler remaining 
unchanged for M >t 26. Two different sets of fixed points are present: to 
distinguish one from the other they will be denoted with the two letters P 
and Q. 

The trivial point Po, having all the components zero except that 
associated with the mode excited by the forcing, is at the origin of the first 
set. Po, which exists for all the values of the Reynolds number R, becomes 
unstable at a critical value R 1. For all M but M = 8 the instability of P0 is 
due to a real eigenvalue of the Jacobian of S (M) becoming positive. So, two 
new symmetric fixed points Pv, 7 = + ,  bifurcate from Po. They are 
changed into each other by the symmetry T and have coordinates zero 
except those relative to k with the difference (ky - kx) multiple of three. 
For M ,<< 13, two other pairs of neighboring fixed points (P~, P*), arisen via 



392 Franceschini et ai, 

a tangent bifurcation, can interfere with the Pv's originating involved 
phenomenologies that we do not describe. For larger M the Fv's and the 
P~'s no longer appear and the Pv's behave in a simple way: they remain 
stable up to a critical value Rs, when a pair of complex conjugate 
eigenvalues of the Jacobian crosses the imaginary axis and a Hopf bifurca- 
tion occurs. 

Consider now the parallel history of the fixed points Q. It originates at 
R 2 when two pairs of fixed points (Q, ,  Q~'), 6 = + ,  Q8 stable and Qg 
unstable, appear via a tangent bifurcation. The points Q~ and Q{ have 
coordinates x k which are zero in correspondence of the k's with odd k x .  As 
a consequence the partial symmetry ,r holds and the Q~'s, as well as the 
Q~"s, are mutual images under "r of each other, which yet does not imply 
identical behavior. Then we have to follow the two distinct evolutions of 
the stable Qs's (the Q~'s, although they produce interesting bifurcation 
phenomena, remain always unstable). 

As was true for the Py's, for small M the behavior of the Q~'s, sensibly 
dependent on M, can be very intricate. Also on this case, in order not to 
make too heavy the description, let us devote our attention only to the limit 
behavior which comes out from M = 26 on. The fixed point Q + is stable up 
to R -- R 2, when a Hopf bifurcation takes place. On the other hand, the 

~ 3 
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Fig. I, Bifurcation diagram of the fixed points for N-mode  truncations with N > 44. Solid 
circles represent stable fixed points, open circles unstables ones, ellipses attracting periodic 
orbits. 
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point Q_ becomes unstable at R 4 bifurcating into the stable Q_, 's ,  c = + ,  
which are transformed into each other by the symmetry T. At R 6 also the 
Q_c's lose stability via Hopf bifurcation. 

The qualitative behavior common to all the models S (M) with M >/26 
is represented in Fig. 1. The ellipses there indicate that attracting periodic 
orbits arise from the points Q +,  Pr, and Q_,  when they become unstable. 
We verified this fact by integrating the system S (26) for Reynolds number 
R slightly larger than _R3,Rs,R6, with initial conditions close to Q+, P~,, 
and Q_c, respectively. These were the only cases in which we integrated the 
differential equations during our numerical investigation. 

Interesting considerations can be made also if we consider the results 
of our investigation from a qualitative point of view. Table I collects the 
numerical values of the critical bifurcation points Ri, i = 1 . . . . .  6, for M 
increasing from 26 to 64, that is for a number of modes N varying from 44 
up to 98. The table clearly shows that, as M increases, each R i is subject to 
small changes, completely negligible in the cases of R 1 and R 2. It appears 
evident that all the Ri's tend to stabilize. 

Because each set L (M~ consists of all the modes k included in a ball of 
radius ~ - ,  the truncations (7) with L = L (M) represent a natural way of 
approximating the infinite system (5). So, even if in a context restricted by 
some simplifying hypotheses, it seems well justified to talk about a qualita- 
tive and quantitative limit behavior of the fixed points of Eqs. (1). 

One can ask whether this limit behavior is maintained or not when we 
consider sequences of truncations associated with sets L which become 

Critical Parameter Values R~, i = 1 , . . . ,  6, for the N-Mode 
Truncations S (M), from M = 26 to M = 64 

i 

M N R I R2 /~3 R4 R5 R6 

Table I. 

26 44 19.78 31.71 50.01 57.18 64.28 87.79 
29 48 19.78 31.70 49,04 56.46 67.69 90.23 
34 54 19.78 31.50 49,38 57.08 67.36 89.28 
36 56 19.78 31.50 49.35 57.14 68.11 89.10 
37 60 19.78 31.53 49.23 57.23 65.49 88.21 
40 64 19.78 31.55 49.30 57.20 64.85 86.71 
41 68 19.78 31.56 49.28 57.70 65.00 88.95 
45 72 19.78 31.58 49.24 58.61 64.53 88.61 
49 74 19.78 31.58 49.24 58.62 64.73 88.69 
50 80 19.78 31.58 49.30 58.86 65.31 87.37 
52 84 19.78 31.58 49.45 58.48 65.33 87.92 
53 88 19.77 31.58 49.46 58.46 65.33 88.21 
58 92 19.77 31.58 49.47 58.61 65.34 87.98 
61 96 19.77 31.58 49.45 58.62 65.34 87.94 
64 98 19.77 31.58 49.45 58.62 65.37 87.96 

i 
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larger and larger excluding some vectors k in some systematic way keeping 
the symmetries T and ~. A few experiments, made with the aim of 
answering such a question, seem to show that the behavior of the fixed 
points always tends to a limit as the number of modes increases over 50. 
This limit, however, can change both qualitatively and quantitatively. 

To conclude the section, two more remarks appear opportune. First, 
the present numerical investigation, which basically is founded on bifurca- 
tion theory and Newton's method to the solution of an equation F(x) = 0, 
x E R N, is considerably facilitated by the knowledge of the fixed point 
structure. It is important to stress the fact that such a structure, well known 
to us in consequence of a complete study of systems, S (8), S (9), and 
S (m),(~0) is strictly connected to the ball form of the sets L (M) and is likely 
to change with different truncations. Second, we warn that any comparison 
with previous results must take into account a rescaling factor for the 
Reynolds number. The present values of R must be divided by a factor 

5 1 ~  to obtain the R scale of Refs. 6 and 11 and by 5,/~- in the remaining 
cases (Refs. 7-10). 

4. DESCRIPTION OF THE FLUID FLOW 

It seems interesting at this point to visualize the actual flow of the fluid 
in the stationary states associated with the fixed points P and Q. Being 
concerned with a two-dimensional incompressible fluid, the natural descrip- 
tion is provided by a stream function +(x, y) such that u = e z • 7+, where 
e z is a unit vector normal to the plane of the fluid. 

Figures 2 and 3, relative to the points P and Q, respectively, show the 
streamfield at different values of the parameter R. While in P0 the flow is 
completely aligned with the forcing, vortexlike structures develop in Pv. As 
R increases they grow stronger and the flow undergoes substantial changes 
because, besides k*, the modes (1, 1) and (1 , -2)  also acquire relevance, 
with the former, the lowest excited in Pv, becoming dominant. 

The points Q have a vortex structure already at their appearance, with 
a number of modes involved. The mode (0, 1), the lowest excited in Qs, is 
always relevant together with k* and becomes dominant as R increases. 
Some other modes, however, remain important and they originate a smaller 
scale superimposed to the main vortices. This is even more true for the 
points Q_f, in which all the modes are activated, with (1, 0) also becoming 
relevant. 

5. CONCLUSION 

We reported the result of a numerical study about the fixed point 
behavior of N-mode truncations of the planar Navier-Stokes equations 
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Fig. 2. Streamfield representation for P0 at (a) R = 35 and for P_  at (b) R = 45, (c) R = 65, 
(d) R = 125. Continuous lines correspond to positive values of the stream function, broken 
lines to negative ones. 

with periodic boundary conditions. Under the simplifying assumption of an 
external force independent of time and acting on one mode only, truncated 
equations exhibit a qualitative and quantitative limit behavior as N is 
increased. When each truncation is obtained by using all and only the 
model included in a ball, from N = 44 the phenomenology does not go 
through any qualitative change. While this was not unexpected, it may 
appear surprising that the critical parameter values reach a good stabiliza- 
tion as N tends toward 100. 
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Fig. 3. Streamfield representation for Q_ at (a) R = 65, (b)R = t10 and for Q_ + at (c) 
R = 115, (d) R = 175. Here the difference between contiguous lines is twice that in Fig. 2. 

In  our  op in ion  the result  is encourag ing  and  val idates  the a p p r o a c h  to 
the N a v i e r - S t o k e s  equat ions  th rough  t runcat ions .  M o d e r n  compute rs  can 
cer ta inly  al low a de ta i led  invest igat ion,  based  on  b i furca t ion  theory,  also of 
per iod ic  a n d  quas iper iod ic  a t t rac tors  for systems of even more  than  one 
h u n d r e d  different ia l  equat ions.  This  s t rengthens our  conf idence  in the 
poss ibi l i ty  of f inding a l imit  behav ior  for most  of the nonchao t i c  a t t ractors ,  
a n d  therefore  our  conf idence  in a sat isfactory descr ip t ion  of the onset  of 

chaos.  
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